

Data Sheet Preliminary Rev. 0.90 / April 2011

ZWIR4512

Secure Low-Power Wireless IPv6 Module

Brief Description

The ZWIR4512 enables secure low-power wireless IPv6 communication for sensors and small devices. ZMDI provides a user-programmable, royalty-free 6LoWPAN stack with mesh routing capability with the ZWIR4512. 6LoWPAN is an Internet Engineering Task Force (IETF) standard to build wireless, low-power IP-based sensor and device networks. These networks can easily be integrated into existing IT infrastructure or operate autonomously.

Secure communication is provided by standardcompliant implementations of the Internet Protocol Security (IPSec) protocol suite and the Internet Key Exchange Protocol version 2 (IKEv2), which enable highly secure end-to-end communication, including over unsecure network nodes.

The module is powered by an ARM[®] Cortex[™]-M3 microcontroller* and provides a rich set of GPIO and peripheral interfaces. Up to 192 kB of flash and 32 kB of RAM are available for the user application. Different low power modes are provided to save energy in battery-operated devices. The modules provide superior radio properties without the need for complicated external RF-design.

Hardware Features

- ARM[®] Cortex[™]-M3 32-bit microcontroller
- Up to 192 kB flash for user applications
- Up to 32 kB RAM for user applications
- Unique EUI64 address
- 2D barcode address label
- 4 (10) channels in EU (US) mode
- 19 GPIOs with multiplexed peripheral functions:
- 2 x UART, SPI, 3 x ADC, 2 x DAC, 11 x PWM, USB, CAN, I2C, 8 x Timer
- Several 5 V tolerant I/Os available
- Low current consumption:
- 3.5 µA Standby Mode
- 13.5 mA Receive Mode
- 18.5 mA Transmit Mode @ 0 dBm
- Modulation schemes
- BPSK (20 kBps EU, 40 kBps US)
- O-QPSK (100 kBps EU, 250 kBps US)
- Receiver sensitivity: up to -110 dBm
- TX output power: up to 10 dBm (US Mode)
- ETSI / FCC compliant

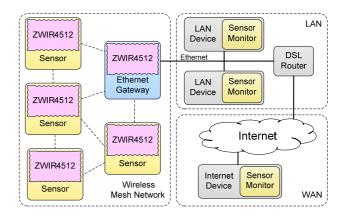
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9

Firmware Features

- Serial command interface with built in security and over-the-air (OTA) update functionality
- Royalty-free library bundle for custom firmware
- 6LoWPAN communication library with mesh routing capability
- IPSec and IKEv2 security libraries
- Over-the-air update library
- Several peripheral libraries

Benefits

- Uniquely simple programmability
- Standard-compliant security solution
- No need for external microcontroller
- Plug-and-Play integration into local land widearea networks
- No RF design required
- Superior radio propagation

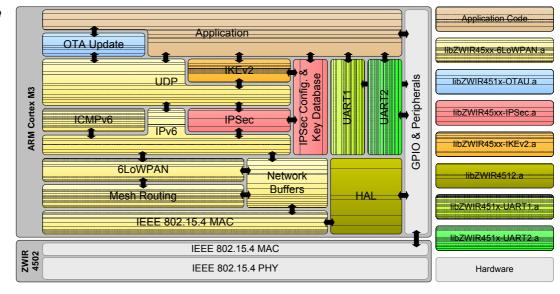

Available Support

- Development Kit
- · Programming guide and application notes
- Ethernet-gateway firmware
- Example programs demonstrating C-API usage

Physical Characteristics

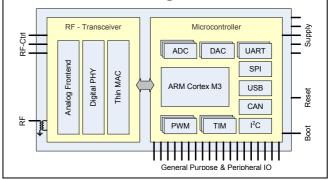
- Supply voltage: 2.0 V to 3.6 V
- Operating temperature: -20 °C to +70 °C
- 30-pin surface-mount package:
- 28 mm x 16.5 mm x 3.5 mm

Typical ZWIR4512 Application Setup


All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is **PRELIMINARY** and subject to changes without notice.

^{*} ARM[®] and Cortex[™] are trademarks of ARM.

Stack Architecture



Applications

The ZWIR4512 serves as a universal secure radio communication module. Typical application examples include home and industry automation, health monitoring, smart metering / smart grid applications, and keyless entry systems.

Its very low current consumption makes the module suitable for battery-operated devices.

ZWIR4512 Block Diagram

Ordering Information

Product Sales Code	Product Sales Code Description	
ZWIR4512AC1xA	Unprogrammed module for user application programs	30 pin SMT, 28 mm x 17 mm
ZWIR4512AC1xI	Preprogrammed module with serial command interface	30 pin SMT, 28 mm x 17 mm
ZWIR4512-Devkit	Development Kit	

Sales and Further Information			www	.zmdi.com	wpan	wpan@zmdi.com	
Zentrum Mikroelektronik Dresden AG Grenzstrasse 28 01109 Dresden Germany		ZMD America, Inc. 8413 Excelsior Drive Suite 200 Madison, WI 53717 USA	Dres 2nd F 4-21- Tokyo	Zentrum Mikroelektronik Dresden AG, Japan Office 2nd Floor, Shinbashi Tokyu Bldg. 4-21-3, Shinbashi, Minato-ku Tokyo, 105-0004 Japan		ZMD FAR EAST, Ltd. 3F, No. 51, Sec. 2, Keelung Road 11052 Taipei Taiwan	
Phone Fax	+49 (0)351.8822.7476 +49 (0)351.8822.87476	Phone +1 (608) 829 Fax +1 (631) 549		e +81.3.6895.7410 +81.3.6895.7301	Phone Fax	+886 2 2377 8189 +886 2 2377 8199	

DISCLAIMER: This information applies to a product under development. Its characteristics and specifications are **PRELIMINARY** and subject to change without notice. Zentrum Mikroelektronik Dresden AG (ZMD AG) assumes no obligation regarding future manufacture unless otherwise agreed to in writing. The information furnished hereby is believed to be true and accurate. However, under no circumstances shall ZMD AG be liable to any customer, licensee, or any other third party for any special, indirect, incidental, or consequential damages of any kind or nature whatsoever arising out of or in any way related to the furnishing, performance, or use of this technical data. ZMD AG hereby expressly disclaims any liability of ZMD AG to any customer, licensee or any other third party for any special, indirect, incidental, or consequential damages of any kind or nature whatsoever arising out of or in any way related to the furnishing, performance, or use of this technical data. ZMD AG hereby expressly disclaims any liability of ZMD AG to any customer, licensee and any other third party hereby waives any liability of ZMD AG for any damages in connection with or arising out of the furnishing, performance or use of this technical data, whether based on contract, warranty, tort (including negligence), strict liability, or otherwise.

© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is **PRELIMINARY** and subject to changes without notice.

Contents

1	Module	e Characteristics	6
	1.1. Ab	solute Maximum Ratings	6
	1.1.1.	Voltage Characteristics	6
	1.1.2.	Current Characteristics	6
	1.1.3.	Thermal Characteristics	6
	1.2. Op	perating Conditions	
	1.2.1.	General Operating Conditions	6
	1.2.2.	Current Consumption per Operating Mode	7
2	Module	e Description	8
	2.1. Ra	idio Transceiver	8
	2.2. Mi	crocontroller	8
	2.2.1.	MCU Core	8
	2.2.2.	Peripherals and Interfaces	8
	2.2.3.	Programming and Debugging	9
	2.3. Fir	mware	9
	2.3.1.	Command Interface (CI) Firmware	9
	2.3.2.	C Application Programming Interface (C-API)	9
	2.4. Po	wer Modes	10
	2.4.1.	Run Mode	10
	2.4.2.	Sleep Mode	10
	2.4.3.	Stop Mode	10
	2.4.4.	Standby Mode	11
3	Applica	ation Circuits	11
	3.1. Po	wer Supply	11
	3.2. Re	eset and Boot Select	12
	3.3. De	bug Access	12
	3.4. An	tenna	13
4	Pinout		14
	4.1. Co	mmand Interface Mode	14
	4.2. AF	PI-Mode	15
5	Physic	al Characteristics	18
	5.1. Mc	odule Dimensions	18
	5.2. Re	commended PCB Footprint	18
6	Solderi	ing Information	19
7		nization	
8	Orderir	ng Information	20
9	Related	d Documents	20
1		ıry	
1		ent Revision History	
		-	

Data Shoot	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the	4 of 21
April 3, 2011	prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes without notice.	4 01 2 1

List of Figures

Figure 3.1	Power Supply Schemes	11
Figure 3.2	External Circuitry for /RESET and BSEL	12
Figure 3.3	JTAG / SWD Connection for Programming and Debugging	13
Figure 4.1	Module Pin-out	14
Figure 5.1	Package Drawing (top, side and bottom view)	18
Figure 5.2	Recommended PCB Footprint	18
Figure 6.1	Recommended Temperature Profile for Reflow Soldering (according to J-STD-020D)	19

List of Tables

Table 2.1	List of Peripheral Interfaces	9
Table 2.2	Power Modes Overview	10
Table 3.1	External Power Supply Components	12
Table 4.1	Pin Assignment in Command Mode	14
Table 4.2	Pin Assignment in API Mode	15
Table 5.1	Physical Dimensions and Tolerances	18
Table 6.1	Soldering Profile Parameters (according to J-STD-020D)	19

	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9	
Data Sheet	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the	5 of 21
April 3, 2011	prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes without notice.	50121

1 Module Characteristics

1.1. Absolute Maximum Ratings

1.1.1. Voltage Characteristics

Parameter	Symbol	Min	Мах	Unit
Main supply voltage	Vcc	-0.3	4	
Backup supply voltage	V _{BAT}	-0.3	4	V
Input voltage at 5V-tolerant GPIO pin	V	-0.3	5.5	V
Input voltage at any other GPIO pin	V _{IN}	-0.3	V _{CC} +0.3	

1.1.2. Current Characteristics

Parameter		Max	Unit
Total current consumption	I _{VCC}	175	
Driving strength of each GPIOx pin	I _{GPIO}	±25	mA
Driving strength of RF-control pins (PACTLN, PACTLP, DIG1)	I _{RFCTRL}	8	

1.1.3. Thermal Characteristics

Parameter	Symbol	Value	Unit
Storage temperature range	T _{STOR}	-50 to +150	С°
Ambient temperature range	T _{AMB}	-20 to +75	C C

1.2. Operating Conditions

1.2.1. General Operating Conditions

Note: See important notes at the end of the table.

Parameter	Symbol	Min	Тур	Max	Unit		
Electrical Characteristics							
Main supply voltage – ADC not used	V _{cc}	2.0		3.6			
Main supply voltage – ADC used	V _{cc}	2.4		3.6			
Backup supply voltage	V _{BAT}	1.8		3.6			
Digital I/O high level input voltage	VIH	$V_{CC} - 0.4$			V		
Digital I/O low level input voltage	VIL			0.4			
Digital I/O high level output voltage	V _{OH}	V _{CC} – 0.4					
Digital I/O low level output voltage	V _{OL}			0.4			
MC	U Clock Charac	cteristics					
MCU core clock frequency ¹	f _{AHB}	8		64	MHz		
MCU core clock frequency accuracy range	Δf_{AHB}	-2		2.5	%		
MCU peripheral bus 1 clock frequency ²	f _{APB1}		4		MHz		
MCU peripheral bus 2 clock frequency ²	f _{APB2}		8		IVIHZ		

Data Sheet April 3, 2011 © 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is **PRELIMINARY** and subject to changes without notice.

ZWIR4512

Secure Low-Power Wireless IPv6 Module

Par	ameter	Symbol	Min	Тур	Max	Unit		
RF Parameters								
Frequency range		f _{RF}	865		928	MHz		
Output power ³				5	10	dBm		
Output power tolerance)		-3		+3	dB		
Receiver sensitivity	BPSK, EU Mode			-110		- dBm		
	BPSK, US Mode			-108				
	QPSK, EU Mode			-101				
	QPSK, US Mode			-101				
Gross data rate	BPSK, EU Mode			20				
	BPSK, US Mode			40		kBit/s		
	QPSK, EU Mode			100		KDIUS		
	QPSK, US Mode			250				
Channel spacing	EU Mode			1		N 41 1-		
	US Mode			2		MHz		
Number of channels	EU Mode ⁴			1 (+3)				
	US Mode			10				
Input/output impedance	; ;			50		Ω		
Frequency offset			-10		+10	kHz		
Spurious emission					tbd			

^{1.} The f_{CORE} clock can be configured to be 8, 16, 32 or 64 MHz. After Reset the clock is set to 8 MHz.

^{2.} f_{APB1} and f_{APB2} are derived from f_{AHB} . Therefore, the same tolerances apply to these clocks.

^{3.} 10 dBm output power is only available in US Mode; EU Mode provides 5 dBm maximum output power.

^{4.} The IEEE802.15.4 standard defines only 1 channel for EU Mode, but extension channels are available in almost all EU countries.

1.2.2. Current Consumption per Operating Mode

Operating Mode	Condition	Тур	Unit
	RX Mode	13.5	
	TX Mode, BPSK, 4dBm	23.5	
Run Mode	TX Mode, QPSK, 4dBm	22.9	
Ruit Mode	TX Mode, BPSK, 0dBm	19.1	mA
	TX Mode, QPSK, 0dBm	18.5	
	TRX Off	4.4	
Sleep Mode	TRX Off, RTC running	4.2	
Stop Mode	TRX Off, RTC running	23.5	μA
Standby Mode	TRX Off, RTC running	3.7	μΑ

Data Sheet April 3, 2011	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes without notice.	7 of 21
-----------------------------	---	---------

2 Module Description

The ZWIR4512 is a programmable wireless IPv6 communication module. Communication is based on 6LoWPAN, a free and open communication standard developed by the Internet Engineering Task Force (IETF). This standard specifies how to transmit IPv6 (Internet Protocol Version 6) packets over low power wireless personal area networks.

ZWIR4512 modules come with a preprogrammed command interface, allowing modem-like communication based on simple commands sent over a serial interface. Alternatively, the module is freely programmable on the basis of an API which exposes abstract communication functionality to the programmer.

Both software options offer secure communication on the basis of the IP Security (IPSec) protocol suite. Additionally, an implementation of the Internet Key Exchange version 2 (IKEv2) is provided, in order to make key management as easy as possible. IPSec and IKEv2 are the mandated standards for securing IPv6 networks. Refer to *ZWIR45xx Application Note—Using IPSec and IKEv2 in 6LoWPANs* for more detailed information about IPSec and IKEv2.

The module comprises an STM32F103RC ARM[®] Cortex[™]-M3 microcontroller from ST Microelectronics and a ZWIR4502 transceiver from ZMDI. These components ensure leading edge performance values at very low power consumption. The module provides a hardware-programmed 64-bit MAC address which is guaranteed to be globally unique.

2.1. Radio Transceiver

The module includes ZMDI's ZWIR4502 radio transceiver. This circuit performs modulation and demodulation of outgoing and incoming data, respectively. The modulation scheme is configurable according to the IEEE802.15.4 standard. The radio transceiver is never accessed directly by application code. This task is performed by the communication stack, which encapsulates such low level functionality in abstract functions.

2.2. Microcontroller

The protocol stack and the user application are executed on an STM32F103RC microcontroller (MCU) from ST Microelectronics. It provides 256 kB flash and 48 kB SRAM memory. The MCU provides a rich set of peripherals and a number of general purpose input/output (GPIO) ports. The GPIO ports of the module are directly connected to the GPIOs of the MCU. Please refer to Table 4.2 for an exact mapping.

2.2.1. MCU Core

The MCU core is an ARM[®] Cortex[™]-M3. This is a 32-bit RISC core with a performance of 1.25 DMIPS/MHz. Using ZMDI's software stack, the maximum operating frequency is 64 MHz. This allows for computational intensive applications. In order to save power, the core can be shut off completely, waking up only on external activity.

2.2.2. Peripherals and Interfaces

The module was designed to make maximum use of the controller's internal peripherals. Up to 15 digital general purpose I/Os can be used by the application. Most of these I/Os have alternative functions. Some of them are 5V-tolerant. Table 2.1 lists all available communication interfaces with their performance values. The last column shows which interfaces are possibly interfering and therefore cannot be used in parallel.

Besides communication interfaces, the module also provides signal conversion peripherals. Three analog-todigital converters (ADCs), two digital-to-analog converters (DACs) and two pulse-width modulation (PWM) peripherals are available.

Data Shoot	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9	
	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes	8 of 21
April 5, 2011	without notice.	

Table 2.1	List of Peripheral Interfaces

Interface	MCU Peripheral	Comments	Module Pins	Not usable together with
UART1	USART1	MaxBaudrate: 230400	9,10,16,17 23,24	USB CAN
UART2	USART2	MaxBaudrate: 115200	5,6,7,8	TIM2-PWM, TIM5-PWM
SPI	SPI1	SCK Max Speed: 4 MHz	1,2,3,4	DAC1 DAC2
I2C	I2C1	400 kHz	23,24	TIM4-PWM
USB	OTG_FS		16,17	CAN
CAN	bxCAN		16,17	USB
PWM	TIM1	4 PWM channels 1 complementary output	1, 12,13,16	
	TIM2	4 PWM channels	5, 6, 7, 8 19	USART2, TIM5-PWM
	TIM3	1 PWM channel	1	SPI1
	TIM4	2 PWM channels	23, 24	I2C
	TIM5	4 PWM channels	5, 6, 7, 8	USART2, TIM2-PWM

2.2.3. Programming and Debugging

Programming and debugging the module is typically done via JTAG. All required MCU ports are connected to module pins for that purpose. Alternatively, Serial Wire Debug (SWD) can be used for programming and debugging. This requires just two bits that have to be reserved, providing two additional GPIO pins.

Alternatively, if debug functionality is not required, it is possible to program the module over a two-wire UART interface. This option allows using all GPIO pins provided by the module. For that purpose, the MCU's internal boot-loader must be started. This is done by holding the BSEL pin of the module high, while a reset is performed or the module is powered on. Please refer to the MCU documentation for more information about serial programming.

2.3. Firmware

2.3.1. Command Interface (CI) Firmware

A module programmed with the Command Interface firmware is able to act like a modem. In this configuration, the module is controlled over a serial interface that is SPI, USB, or one of the two UARTs. The CI Mode provides all standard communication functions like unicast and multicast data transmission and reception, as well as all security functions. Access to internal peripherals is limited in this mode. Typically, an external microcontroller or a PC is required to control module operation. However, for simple sensing or acting applications, it is also possible to configure the module to run autonomously without the need for an external controller. Please refer to the *ZWIR45xx Command Interface Manual* for further information.

2.3.2. C Application Programming Interface (C-API)

A C-API is provided for applications that should run directly on the embedded microcontroller. Communication and security functionalities are encapsulated in a set of libraries that export functions for accessing and controlling them. The library architecture is modular, allowing tailoring applications to user needs. Applications running on the microcontroller can make use of the rich set of peripherals that are provided by the controller.

Data Chast	\odot 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9	
Data Sheet	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the	9 of 21
April 3, 2011	prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes without notice.	90121

Depending on the library configuration, there are up to 192 kB of flash and 32 kB of RAM available for the user application. This is sufficient even for complex applications with high memory needs. If over-the-air (OTA) update functionality is required, the amount of flash available for user applications is reduced to one half. For further information on C-API programming and over-the-air update, please refer to the *ZWIR451x Programming Guide* and the *ZWIR45xx Over-the-Air Update Manual*.

2.4. Power Modes

The ZWIR4512 module provides a set of operating modes with different capabilities and power requirements. This document only highlights the main features of these operating modes. Table 2.2 gives an overview of the characteristics of the available power modes. A table of typical power consumption in the different modes can be found in specification section 1.2.2.

Refer to the ZWIR451x Programming Guide for detailed usage instructions for the operating modes.

Wakeup		CIC	ock	Context ¹	I/O	Transceiver
Source	Time	MCU Core	Peripherals			
		On	On ²	Retained	As configured	On ³
ny IRQ	1.8 µs	Off	Off ⁴	Retained	As configured	Off ⁴
TC IRQ xternal IRQ	5.4 µs	Off	Off	Retained	As configured	Off ⁴
TC IRQ Vakeup pin	50 µs	Off	Off	Lost	Analog input	Off
	Source ny IRQ TC IRQ xternal IRQ TC IRQ	Source Time ny IRQ 1.8 μs TC IRQ 5.4 μs TC IRQ 5.4 μs	Source Time MCU Core On On ny IRQ 1.8 μs Off TC IRQ 5.4 μs Off TC IRQ 50 μs Off	SourceTimeMCU CorePeripheralsOnOn²ny IRQ1.8 μsOffOff⁴TC IRQ xternal IRQ5.4 μsOffOffTC IRQ xternal IRQ50 μsOffOff	Source Time MCU Core Peripherals On On ² Retained ny IRQ 1.8 μs Off Off ⁴ TC IRQ 5.4 μs Off Off TC IRQ 50 μs Off Off	Source Time MCU Core Peripherals On On ² Retained As configured ny IRQ 1.8 μs Off Off ⁴ Retained As configured TC IRQ xternal IRQ 5.4 μs Off Off Off Retained As configured TC IRQ 50 μs Off Off Lost Analog input

Table 2.2 Power Modes Overview

^{1.} Refers to the status of the RAM and peripheral register contents after wakeup – the backup registers of the MCU are always available.

^{2.} Clock is enabled for all peripherals that have been enabled by application code and all peripherals that are used by the library.

^{3.} Can be powered off by application code.

^{4.} Remains if peripheral/transceiver is selected as wakeup source.

2.4.1. Run Mode

In Run Mode, all functions of the module are available. The microcontroller and all its peripherals are powered. Typically the transceiver is also powered, but it can be disabled by software. The module enters Run Mode automatically after startup. The application software must switch to one of the other operating modes if required.

2.4.2. Sleep Mode

In Sleep Mode, the microcontroller core is not clocked. The power state of the transceiver and the microcontroller peripherals depends on the wakeup configuration. All peripherals that are selected as wakeup source continue to operate. After wakeup, the application program continues execution at the position it was stopped. Sleep Mode allows reacting to external events such as the reception of data, external interrupts, or timer events. The power consumption in this mode strongly depends on which peripherals are enabled. The I/O configuration is not changed during Sleep Mode.

2.4.3. Stop Mode

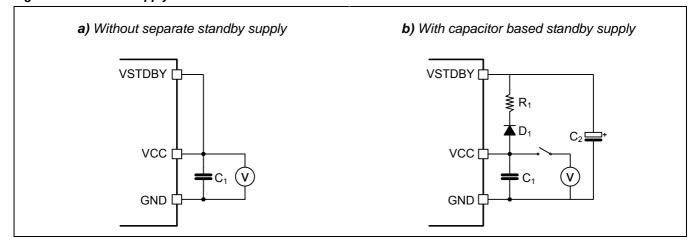
Stop Mode is an ultra-low-power mode with RAM retention. The MCU core and the MCU peripherals are not clocked. Only the internal real-time clock or any external pin can be used for triggering wakeup from Stop Mode. After wakeup, the program continues execution at the position it was stopped. In Stop Mode, all I/Os remain in the configuration that was active when entering Stop Mode.

Data Shoot	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the	10 of 21
April 3, 2011	prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes without notice.	10 01 21

2.4.4. Standby Mode

Standby Mode is the lowest power mode. The transceiver and all microcontroller peripherals are consequently powered off. RAM contents are lost. Waking up from Standby Mode can be triggered by a real-time-timer event or by one dedicated pin. When going to Standby Mode, all I/Os are put into analog input mode, so the application circuit must ensure that external components receive defined signal levels if required. When the module exits Standby Mode, it is restarted from the reset handler in the same sequence as the restart after power-on or pressing the reset button.

3 Application Circuits


ZWIR4512 modules are designed to require minimal external circuitry. The following sections illustrate how modules must be connected in order to ensure proper power supply, reset behavior, programmability, and radio performance. Instructions for the connection of GPIO pins are not given.

3.1. Power Supply

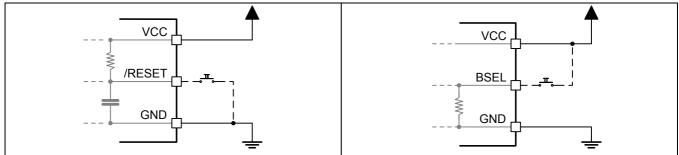
All internal components of the ZWIR4512 that require a stable power supply are internally decoupled with a number of capacitors. Nevertheless, the module requires one external decoupling capacitor between VCC and GND. This is the minimal external circuitry required for proper operation.

The module provides two different power supply pins: VCC and VSTDBY. V_{CC} is the normal supply voltage that must be applied in Run, Sleep or Stop Mode. During Standby Mode, the module is powered by V_{STDBY} and V_{CC} can be switched off.

Figure 3.1 shows two possible power supply schemes. Scheme a) connects VSTDBY to the same voltage source as VCC. This is the commonly used configuration. However, scheme b) allows switching off V_{CC} in Standby Mode. This can help reduce power dissipation in applications with ultra-low power requirements. During the complete standby phase, VSTDBY is powered from a buffering capacitor.

Figure 3.1 Power Supply Schemes

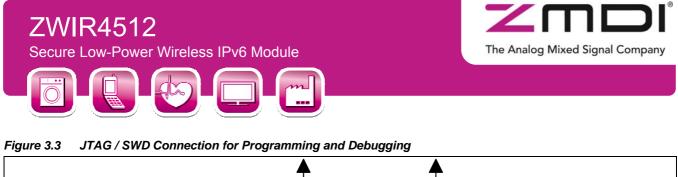
Data Sheet April 3, 2011	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes without notice.	11 of 21
-----------------------------	---	----------

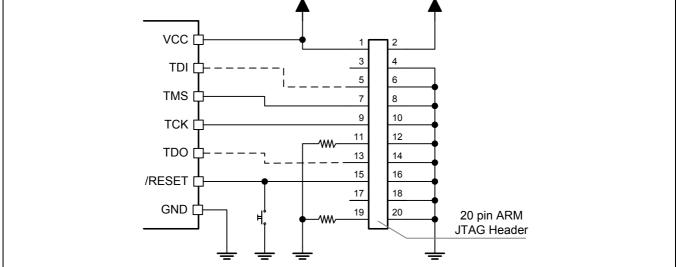

Table 3.1 External Power Supply Components

Symbol	Function	Value/Comment
C ₁	Decoupling capacitor	Mandatory, 10 μF
R ₁	Charge current limitation	6.8 k
D ₁	Buffering capacitor discharge protection	Shottky diode, e.g. BAT54-02V
C ₂	Buffering capacitor	> 0.1F

3.2. Reset and Boot Select

The reset pin is debounced and has a pull-up resistor on the PCB. Thus, a push-button can be connected directly to GND or the pin can be left unconnected if it is not required. The BSEL pin is pulled down internally. If BSEL is not required, it can be left unconnected. Figure 3.2 shows how these pins are connected externally and illustrates the internal circuitry.





3.3. Debug Access

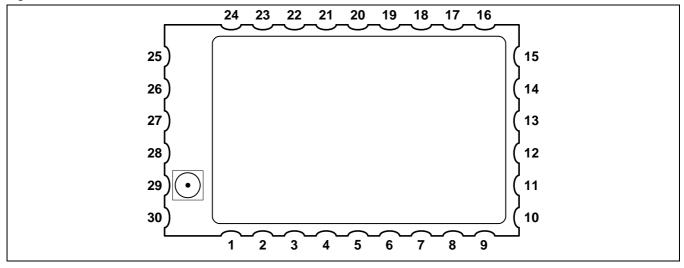
The ZWIR4512 provides debug access by means of a JTAG or SWD interface. Figure 3.3 shows an example of connecting the module with a 20-pin standard ARM[®] JTAG header. If no JTAG connection is required, the dotted connections can be left out and two additional pins are available as GPIOs.

Data Sheet	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the	12 of 21
April 3, 2011	prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes without notice.	12 01 21

3.4. Antenna

There are two options to connect an external antenna. The antenna can be connected to the module using a coaxial cable that is mounted on the U.FL connector, or an external antenna terminal on the host PCB can be connected to the ANT pin. If the on-board U.FL connector is used, the ANT pin must be left unconnected. An external antenna must be connected with a 50 Ω microstrip wire.

Data Shoot	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the	10 (01
	without notice.	13 of 21



4 Pinout

Figure 4.1 Module Pin-out

4.1. Command Interface Mode

Table 4.1 Pin Assignment in Command Mode

Pin Nr.	Name	Functional Description / Comments				
1	SPI_MOSI					
2	SPI_MISO	The SPI is either used as the command interface or as the sensor interface. For more				
3	SPI_SCK	detailed information, see the ZWIR45xx Command Interface Manual.				
4	/SPI_SSN					
5	UART2_RX	UART2 is either used as the command interface or as the sensor interface. For more				
6	UART2_TX	detailed information, see the ZWIR45xx Command Interface Manual.				
7	/RX_ACTIVE					
8	/TX_ACTIVE	Pins available for the connection of indicator LEDS. Low active, open drain.				
9	/IDLE					
10	/RESET	Pulling this pin to low resets the controller and the module.				
11	GND					
12	UART1_RX	UART1 is either used as the command interface or as the sensor interface. For more				
13	UART1_TX	detailed information, see the ZWIR45xx Command Interface Manual.				
14	VCC					
15	BSEL	If this pin is driven high during startup or when releasing the RESET line, the device starts its internal boot-loader, allowing reprogramming the device via UART1 or USB. Connect to GND if not required.				
16	USB_DM	LICD can be used for the command interface				
17	USB_DP	USB can be used for the command interface				
18	VBAT	Standby Mode power supply				

Data Sheet	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9	
	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the	14 of 21
April 3, 2011	prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes without notice.	14 01 21

Pin Nr.	Name	Functional Description / Comments
19	Unused	
20	Unused	
21	Unused	
22	Unused	
23	Unused	
24	Unused	
25	Unused	Leave unconnected.
26	Unused	Leave unconnected.
27	Unused	Leave unconnected.
28	GND	
29	ANT	Amplified RF output for antenna connection.
30	GND	

4.2. API-Mode

Note: See important notes at the end of Table 4.2. Pins that have a checkmark in the "5V" column are 5V-tolerant.

Pin	Name	MCU Port	Type ¹	5V	Startup Function	Alternative Function
1	GPIO7	PA7	Ю		GPIO (input mode)	SPI1 – MOSI ADC1 / ADC2 – IN7 PWM (TIM8-1N, TIM3-1, TIM1-1N)
2	GPIO6	PA6	Ю		GPIO (input mode)	SPI1 – MISO ADC1 / ADC2 – IN6 PWM (TIM3-1) Timer Break (TIM1, TIM8)
3	GPIO5	PA5	Ю		GPIO (input mode)	SPI1 – SCK DAC – OUT2 ADC1 / ADC2 – IN5
4	GPIO4	PA4	Ю		GPIO (input mode)	SPI1 – NSS USART2 – CK DAC – OUT1 ADC1 / ADC2 – IN4
5	GPIO3	PA3	Ю		GPIO (input mode)	USART2 – RX ADC1 / ADC2 / ADC3 – IN3 PWM (TIM2-4, TIM5-4)
6	GPIO2	PA2	Ю		GPIO (input mode)	USART2 – TX ADC1 / ADC2 / ADC3 – IN2 PWM (TIM2-3, TIM5-3)

 Table 4.2
 Pin Assignment in API Mode

Data Chast	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9	
Data Sheet	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the	15 of 21
April 3, 2011	prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes without notice.	13 01 21

ZWIR4512

Secure Low-Power Wireless IPv6 Module

Pin	Name	MCU Port	Type ¹	5V	Startup Function	Alternative Function
7	GPIO1	PA1	Ю		GPIO (input mode)	USART2 – RTS ADC1 / ADC2 / ADC3 – IN1 PWM (TIM2-2, TIM5-2)
8	GPIO0	PA0- WKUP	Ю		GPIO (input mode)	WKUP USART2 – CTS ADC1 / ADC2 / ADC3 – IN0 PWM (TIM2-1, TIM5-1) Timer Trigger (TIM2)
9	GPIO12	PC13	IO		GPIO (input mode)	TAMPER-RTC
10	/RESET	NRST, PB4	I	~	Reset	Not available
11	GND	GND	S		Ground	Not available
12	GPIO9	PA10	IO	~	GPIO (input mode)	USART1 – RX PWM (TIM1-3)
13	GPIO8	PA9	IO	~	GPIO (input mode)	USART1 – TX PWM (TIM1-2)
14	VCC	VCC	S		Power Supply	Not available
15	BSEL	BOOT0	I		Boot mode selection	Not available
16	GPIO10	PA11	Ю	~	GPIO (input mode)	USART1 – CTS USB – D- CAN – RX PWM (TIM1-4)
17	GPIO11	PA12	Ю	~	GPIO (input mode)	USART1 – RTS USB – D+ CAN – TX Timer Trigger (TIM1)
18	VSTDBY	VBAT	S		Alternative power supply for Standby Mode	Not available
19	TDO	PB3	Ю	*	JTAG – TDO	TRACESW SPI1 – SCK PWM (TIM2-2)
20	TMS	PA13	IO	✓	JTAG – TMS	GPIO ²
21	TDI	PA15	Ю	~	JTAG – TDI	GPIO ³ SPI1 – NSS Timer Trigger (TIM2)
22	ТСК	PA14	IO	✓	JTAG – TCK	GPIO ²
23	GPIO14	PB7	Ю	~	GPIO (input mode)	I ² C – SDA UART1 – RX ⁴ PWM (TIM4-2)

	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes	16 of 21
April 3, 2011	without notice.	

ZWIR4512

Secure Low-Power Wireless IPv6 Module

Function

^{1.} The "Type" column indicates the type of the pin: IO - input/output, I - input only, O - output only, S - power supply.

^{2.} In order to enable alternative functions, field SWJ_CFG in MCU register AFIO_MAPR must be set to 0b100!

^{3.} In order to enable alternative functions, field SWJ_CFG in MCU register AFIO_MAPR must be set to 0b010 or 0b100!

^{4.} Remapped function.

Data Ohaat	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9	
Data Sheet	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the	17 of 21
April 3, 2011	prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes without notice.	17 0121

5 Physical Characteristics

5.1. Module Dimensions

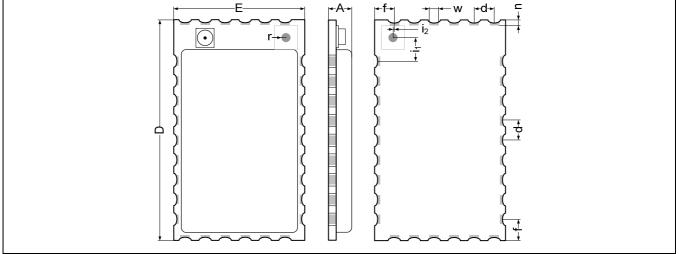
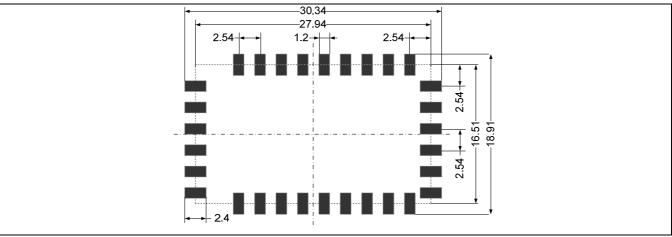



 Table 5.1
 Physical Dimensions and Tolerances

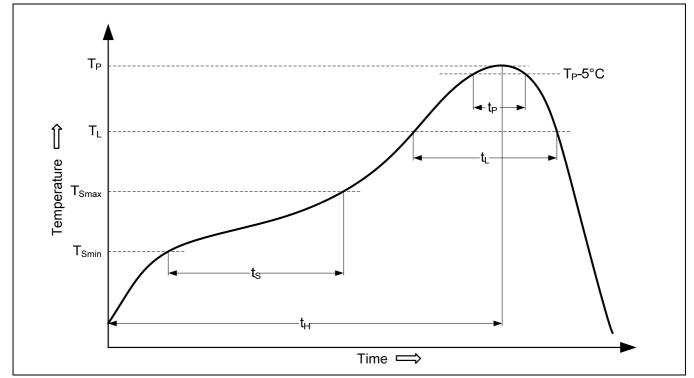
Symbol	Millimeters			Symbol		Millimeters	
	Min	Тур	Max		Min	Тур	Max
A	3.5	3.56	3.6	n		1	
D	tbd	27,94	tbd	w	1.08	1.1	1.12
E	tbd	16,51	tbd	i ₁	tbd	2.67	tbd
d	tbd	2.54	tbd	i ₂	tbd	0.27	tbd
f	tbd	2.54	tbd	r	tbd	0.5	tbd

5.2. Recommended PCB Footprint

Figure 5.2 Recommended PCB Footprint

Data Shoot	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the	18 of 21
April 3, 2011	prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes without notice.	10 01 21




6 Soldering Information

To ensure that soldered connections do not break during the reflow soldering process of the application PCB, the soldering profile described in Figure 6.1 and Table 6.1 must be maintained. This profile is aligned with the profile defined in the IPC/JEDEC standard J-STD-020D.

Table 6.1	Soldering Profile Parameters (according to J-STD-020D)

Profile Feature	Symbol	Min	Max	Unit
Time 25°C to T_P	t _H		8	min
Peak package body temperature	Τ _Ρ		260	°C
Preheat / Soak				
Soak temperature	Ts	100	150	°C
Soak time	ts	60	120	S
Ramp-up				
Ramp-up rate	T_L to T_P		3	°C/s
Time maintained above T∟	tL		150	S
Time within 5°C of T_P	t _P		30	S
Ramp-down				
Ramp-down rate	T_P to T_L		6	°C/s

Data Ohaat	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9	
Data Sheet	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the	19 of 21
April 3, 2011	prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes without notice.	10 01 21

7 Customization

For larger order quantities, it is possible to deliver modules with preprogrammed customer firmware. Depending on the quantity and user requirements, hardware customization to fit customer needs might be possible. Please contact our support team for requests regarding module customization.

8 Ordering Information

Product Sales Code	Description	Package
ZWIR4512AC1xA	Unprogrammed module for user application programs	30 pin SMT, 28 mm x 17 mm
ZWIR4512AC1xI	Preprogrammed module with serial command interface	30 pin SMT, 28 mm x 17 mm
ZWIR4512-Devkit	Development kit	

9 Related Documents

Document	File Name
ZWIR45xx Command Interface Manual	ZWIR45xx_Cl_Manual_revX.x.pdf
ZWIR451x Programming Guide	ZWIR451x_Programming_Guide_revX.x.pdf
ZWIR45xx Over the Air Update Manual	ZWIR45xx_OTA_Update_Manual_revX.x.pdf
ZWIR45xx Application Note – Using IPSec and IKEv2 in 6LoWPANS	ZWIR45xx_App-Note_Using_IPSec_IKEv2_revX.x.pdf

Visit ZMDI's website <u>www.zmdi.com</u> or contact your nearest sales office for the latest version of these documents.

Data Sheet	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9	
	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes without notice.	20 of 21

10 Glossary

Term	Description
6LoWPAN	IPv6 over Low Power Wireless Personal Area Networks
ADC	Analog-to-digital converter
API	Application Programming Interface
CI	Command Interface
DAC	Digital-to-analog converter
GPIO	General purpose input/output
IPv6	Internet Protocol Version 6
JTAG	Joint Test Access Group
MCU	Microcontroller (STM32F103RC)
ΟΤΑ	Over-the-air update
PCB	Printed Circuit Board
PWM	Pulse-width modulation
SWD	Serial Wire Debug
TRX	Transceiver (ZWIR4502)

11 Document Revision History

Revision	Date	Description
0.90	April 4, 2011	First release of preliminary version.

Sales and Further Info	ormation	www.zmdi.com	wpan@zmdi.com	
Zentrum Mikroelektronik Dresden AG Grenzstrasse 28 01109 Dresden Germany	ZMD America, Inc. 8413 Excelsior Drive Suite 200 Madison, WI 53717 USA	Zentrum Mikroelektronik Dresden AG, Japan Office 2nd Floor, Shinbashi Tokyu Bldg. 4-21-3, Shinbashi, Minato-ku Tokyo, 105-0004 Japan	ZMD FAR EAST, Ltd. 3F, No. 51, Sec. 2, Keelung Road 11052 Taipei Taiwan	
Phone +49 (0)351.8822.7476 Fax +49 (0)351.8822.87476	Phone +1 (608) 829-1987 Fax +1 (631) 549-2882	Phone +81.3.6895.7410 Fax +81.3.6895.7301	Phone +886 2 2377 8189 Fax +886 2 2377 8199	

DISCLAIMER: This information applies to a product under development. Its characteristics and specifications are **PRELIMINARY** and subject to change without notice. Zentrum Mikroelektronik Dresden AG (ZMD AG) assumes no obligation regarding future manufacture unless otherwise agreed to in writing. The information furnished hereby is believed to be true and accurate. However, under no circumstances shall ZMD AG be liable to any customer, licensee, or any other third party for any special, indirect, incidental, or consequential damages of any kind or nature whatsoever arising out of or in any way related to the furnishing, performance, or use of this technical data. ZMD AG hereby expressly disclaims any liability of ZMD AG to any customer, licensee and any other third party hereby waives any liability of ZMD AG for any damages in connection with or arising out of the furnishing, performance or use of this technical data, whether based on contract, warranty, tort (including negligence), strict liability, or otherwise.

Data Ohaat	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 0.9	
Data Sheet	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the	21 of 21
April 3, 2011	prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes	210121
·	without notice.	